
GPU PROGRAMMING: 2D
FITTING FOR SMALL-ANGLE
NEUTRON SCATTERING
DATA Helen Park

Paul Kienzle

Matt Wasbrough

DATA USED: COLLECTED BY
NEUTRON SCATTERING

• Neutrons scatter off

large scale structures

in the material

• Reveal structure of

material

• Colors refer to

intensity/ density of

neutrons scattered

SURFACTANT DATA

Liposome

Micelle

Bilayer Sheet/Lamellar

• Has a hydrophobic tail, hydrophilic head

• Form variety of shapes

• Used in soap, drug delivery, even mayonnaise!

UNDER SHEAR STRESS

• Device spins the

surfactants at different

speeds

• Surfactants change

shape

• How does the geometry

of the material change

under different

frequencies?

2D FITTING

• Fitting allows a better understanding of the data

• Chose a model (such as Core-Shell-Cylinder, Lamellar, Triaxial-

Ellipse) to best describe the phase of the surfactant micelles

• Manipulate variables to fit the shape and orientation of the data

 These are examples of data collected under various amounts of

shear stress

0 Hz 1230 Hz 7000 Hz

SASVIEW: FITS THE DATA

• Choose

model that

best

describes

data

• Issues: Slow,

crashes

often

SOLUTION!

•GPU programming: faster

•CPU—found in most PCs

•GPU—previously used solely in 3D
gaming

•GPU allows parallel

processing, 1000s of

threads, 100s more cores

than CPU

• GPUs are cheap, fast, and
energy efficient

• For matrix multiplication: GPU =

150*CPU MFLOPS (Mega floating

point operations per second)

• But, need to tune algorithm and

memory transfer for every sized

GPU, and for each kernel and

program

MA Hospital 300X

U Rochester 160X

U Amsterdam 150X

Harvard 130X

U Pennsylvania 130X

Nanyang Tech 130X

U Illinois 125X

Cambridge U 100X

Boise State 100X

Florida U 100X

Speed-ups of different projects

The Host (CPU) passes memory buffers,
kernels, and queue commands to the device,

and receives the result, also in a buffer

HOST

HOST

The Context holds the GPU(s)—varying shaped & sizes

CONTEXT

HOST

CONTEXT

DEVICE DEVICEDEVICEDEVICE

A Device (GPU) handles the computations.

Handling of memory transfer
global  local  private

effect speeds

A Device has global, local,

and private memory, and

many work groups that

perform calculations in

parallel

OPENCL DESIGN

Central Blackboard: Global

Memory

Class Blackboard: Local

Memory

Notebook: Private Memory

DEVICE
ARCHITECTURE

A work group,

128x128 performs

computations

Work-groups

run in parallel,

do not interact

128 Qx

1
2
8
 Q

y

CONTEXT

DEVICE DEVICEDEVICEDEVICE

Kernel Kernel Kernel Kernel

The Kernel is the physical code, or program, that are

computed by the device

HOST

CONTEXT

DEVICE DEVICEDEVICEDEVICE

Kernel Kernel Kernel Kernel

HOST

The Queue relays and manages how kernels and buffers

are translated and organized

Our Kernel: calculates scattering

intensity, stored in a 2D array

Cylinder Model equations:

Cylinder Model kernel:

• In our algorithm,

work-group takes

random Qx &Qy and

calculates the

scattering density at

that point

• Performs this until

every Qx & Qy

complete

• Adds results and

returns to CPU

POLYDISPERSITY

Loop for polydispersity in CPU

- Size of polydispersity corresponds to width of bell-curve

- Allow a variety of values for a variable (like length)

- For example, high polydispersity in theta gives a larger range of angles

- Also, the more bins, the more accurate the fit

← High polydispersity, but

low number of bins (5)

→ Lower polydispersity,

but many bins (40)

Cost: higher bins

means much slower

fit, so need to balance

FITTING PROGRAM

• In CPU, program the context,

device(s), the queue to relay

information, and write the buffers for

variables, and return values

• Using bumps, loop (again!) over the

entire program to fit different variables

RESULTS

Model Sasview GPU Speedup

Cylinder 3977.7ms 202.3ms 19.7X

Ellipse 2953.2ms 285.5ms 10.3X

Core-Shell-Cylind 71149.9ms 4474.7ms 15.9X

Triaxial-Ellipse 100627ms 6500.2ms 15.5X

Lamellar 69.2ms 6.2ms 11.2X

RESULTS

• Day-long fit to hour-long fit

• Paul: 50X faster—cuts out values when the polydispersity

weight is low, use local memory

• If 4 GPUs: 4 times faster (200X)

• Allows increased control over simultaneous fitting, multiple-

model fitting, and the angular limits of integration in 1D

• Also used models to fit various scattering data

RESULTS

• Here is an

example of a fit

for a surfactant at

0 Hz

• The left is the

data, the middle

is the fit, and the

right is the

residuals of the

data

ACKNOWLEDGEMENTS

 Paul Kienzle

 Dr. Matt Wasbrough

 Aaron West

 Yusuf Ameri cainaki

OPENCL VS CUDA

CUDA:

• Easier to understand;

more tutorials online

and in books

• CUDA: need to have

whole toolchain

available

OpenCL:

• Newer, so not much

online; less accessible

to learn

• Broader range of

hardware supported

• simply link the shared

library to access

